Like this? Click to receive free updates
General Electric Company, GE Global Research (Niskayuna, NY): Developing and testing a new directional drilling orientation sensor capable of operating at 300°C for 1000 hours; this will enable measurement-while-drilling (MWD) at the significantly higher temperatures needed for geothermal drilling than current tools.
Oklahoma State University (Stillwater, OK): Developing a new detailed model for common drill bits (PDC) based on tracking cutter wear from rock/bit interactions and then design a system to optimize geothermal drilling based on real-time data from that model.
Sandia National Laboratories (Albuquerque, NM): Developing sensing tools, algorithms, and actuators for an intelligent drilling architecture which optimizes how deep the drill cutter goes in real-time, leading to longer life for down-hole drilling components, reduced unplanned trips, and more consistent drilling rates.
Sandia National Laboratories (Albuquerque, NM): Developing and testing a new all-metal down-hole motor that turns drilling fluid flow into torque; this motor will remove current temperature limitations, reduce vibrations, and enable directional drilling into high-temperature geothermal reservoirs.
Texas A&M Engineering Experiment Station (College Station, TX): Developing and testing a new drill bit system that uses nanosecond micro-plasma discharge to create localized shock waves which initiate micro-cracks ahead of the bit, making it easier to cut rock; this system is capable of doubling ROP for drilling in geothermal wells.
University of Oklahoma (Norman, OK): Developing and testing smart lost circulation materials (LCM) that use shape memory polymers activated by geothermal temperature to prevent the loss of fluid into fractured rock next to the drilled wellbore; the smart LCM expands within the fractures to reduce non-drilling time (NDT) and strengthen the wellbore in high-temperature geothermal drilling operations.
Like this? Click to receive free updates